Quantization Error![]()
Let us assume that the unknown resistance (x) is at the bottom (see Figure 1).
The ADC reading (V) will then be
Solving for the value of x yields
Since the ADC readings come in discrete steps, from 0 to U, let us consider how this quantization error affects our measurement. We compute the relative error in x, due to the quantization error, written as a symmetric expression in U and V. This can then be re-expressed as a function of r=(x/y). The error written this way will tell us how the bias resistor should be chosen to maximize the accuracy of the readings in a particular range of sensor resistance.
It is clear, that the minimum of the error is at r=1, and the relative error changes in a symmetric fashion. The figure below shows how the relative quantization error behaves for U=1023 (10-bits) and U=4095 (12-bits).
For a 10kOhm bias resistor, and a 10-bit converter we can get a 1% accurate measurement for sensor resistances in the 1.2 kOhm-80 kOhm range. For a 12 bit ADC we can cover the 250 Ohm- 400 kOhm range. |